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Thermodynamic properties of one-dimensional lattice models exhibiting entropy-driven phase transforma-
tions are discussed in quantum and classical regimes. Motivated by the multistability of compounds exhibiting
photoinduced phase transitions, we consider systems with asymmetric, double, and triple well on-site potential.
One finds that among a variety of regimes, quantum versus classical, discrete versus continuum, a key feature
is asymmetry distinguished as a “shift” type and “shape” type in limiting cases. The behavior of the specific
heat indicates one phase transformation in a “shift” type and a sequence of two phase transformations in
“shape”-type systems. Future analysis in higher dimensions should allow us to identify which of these entropy-
driven phase transformations would evolve into phase transitions of the first order.
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I. INTRODUCTION

One-dimensional �1D� or quasi-one-dimensional strongly
nonlinear systems exhibit a variety of interesting phenom-
ena. Lattice systems with degenerate vacuum, supporting to-
pological excitations are applied to hydrogen-bonded com-
plexes: kinks are responsible for the proton transport through
the chains of hydrogen bonds �1,2�. Localized excitations
such as kinks or solitons also play an important role in dy-
namical phenomena in biological systems �3,4�. In the ther-
modynamic context, the coexistence of localized excitations
�kinks� and extended excitations �phonons� manifests itself
via a characteristic hump developed in the specific heat �5,6�.
Two-dimensional and three-dimensional versions of systems
with degenerate vacua exhibit phase transitions of second
order—in fact, it is the simplest manifestation of phenomena
of spontaneously broken �discrete� symmetry. It was shown
by Morris and Gooding �7� that systems with nondegenerate
vacua exhibit first-order phase transitions and that analysis of
1D systems provides some insight into the properties of sys-
tems of higher dimensions.

Recent discoveries and progress in understanding of the
phenomena commonly referred to as photoinduced phase
transitions �8–14� have turned attention to nonlinear systems
with nondegenerate vacua. The remarkable properties of that
class of systems are their strongly anisotropic, nearly one-
dimensional character, first-order phase transition, which
might be light-induced, and multistability. Multistability is of
particular character: two nondegenerate, usually distinct
phases, a stable one and a metastable one, e.g., ionic and
neutral in charge-transfer systems �8�, may be distinguished.
Among a variety of phenomena and materials exhibiting
photoinduced phase conversion, the most popular are charge-
transfer and spin-conversion compounds. In charge-transfer
systems, the ground state is an ionic dimerized phase and the
neutral phase corresponds to a metastable state. That class of
systems reveals a first-order phase transition from a low-
temperature ionic phase to a high-temperature neutral phase.
In spin-conversion or spin-crossover systems, the low spin
state corresponds to a ground state and the high spin state

corresponds to a metastable state �14�. A first-order phase
transition takes place between these two states. Dynamical
phenomena of photoinduced phase transformations depend
strongly on electron-phonon coupling and it seems that phase
conversion, which also might be light-induced, is a transition
from a stable to a metastable state. The lower, ground state is
of smaller entropy than the higher, metastable state. Phase
transformation in these highly anisotropic, nearly one-
dimensional systems is an example of entropy-driven con-
version.

In different attempts at describing the complexity of
photo-induced phase conversions, two types of approaches
might be identified. In the Peierls-Hubbard-type approach
�8,13,14�, electronic excitations are regarded as delocalized,
belonging to two and four narrow bands in neutral and ionic
phases, respectively. In the other class of approaches, at-
tempting to describe some dynamic electron-phonon features
�9� and thermodynamic properties of charge-transfer and
spin-crossover �14� photoinduced phase-transition systems,
two or three states of localized electrons coupled to phonon
system are taken into account. That approach may lead to a
lattice, local, asymmetric double-well potential �9,14� or
triple-well potential �15�. Such a multiple-well, on-site po-
tential corresponds to an electronic ground state. We discuss
here the properties of such a minimal lattice model with local
asymmetric double-well or triple-well potential.

Our purpose is to give a thorough discussion of the ther-
modynamic properties of one-dimensional lattice models of
systems developing entropy-driven phase transformation. In
such systems one can observe an interesting thermodynamic
behavior clearly manifested in the specific heat. Examination
of the analytic form of thermodynamic functions in the clas-
sical limit provides a detailed description of the phase trans-
formations occurring in that class of systems. Going beyond
the classical limit, one can describe the role of quantum cor-
rections: though quantum corrections influence essentially
specific heat as a function of temperature in a quantum re-
gime, the qualitative character of phase conversion is pre-
served. Discreteness of the systems is also taken into ac-
count: entropy-driven phase transformation apparent in the
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continuum limit of large asymmetry systems, gradually
damped with growing discreteness, turns out eventually to be
smeared out. We apply here a particular form of an on-site
double-well potential as composed of two Morse
potentials—a double Morse potential—that belongs to the
class of �quasi�exactly solvable quantum-mechanical models.
It enables us to give an analytical formula in a part of our
qualitative discussion.

Our paper is organized in the following way. In the next
section, we introduce the model and formulate the problem.
In Sec. III, the partition function within the Feynman-
Kleinert approach is briefly considered. The one-dimensional
character of the problem converts the question of finding the
partition function and thermodynamic functions into the
problem of solving some eigenvalue integral or differential
�pseudo�Schrödinger equation. The method of taking into ac-
count quantum effects is described and a semiclassical ap-
proach is applied. In Sec. IV, the thermodynamics of the
model system with a double-well potential is investigated in
the classical limit; the quantum regime and effects of dis-
creteness are discussed in Sec. V. In Sec. VI, the properties
of systems with a triple-well potential are considered. Dis-
cussion and final remarks are given in Sec. VII. Appendixes
A and B contain technical details: a description of the evalu-
ation of the partition function in the quantum regime �Ap-
pendix A� and a semiclassical approach for the quantum-
mechanical eigenvalue problem in a case of a multiple-well
potential �Appendix B�.

II. FORMULATION OF THE PROBLEM

We shall consider a one-dimensional �1D�, one-
component system of harmonically coupled atoms with a
local asymmetric double-well or triple-well potential. The
Hamiltonian of such a system will be written in the form �5�

H = �
n

m�0
2

�2 �1

2
ẋn

2 +
1

2
k�xn+1 − xn�2 + V�xn�� , �1�

where � denotes the characteristic inverse distance, �0 is a
characteristic frequency, and xn is the dimensionless coordi-
nate at the nth lattice site. ẋn denotes �dimensionless� time
derivative. The double-well on-site potential is chosen as an
asymmetric double Morse potential,

VDM�xn� = V1�e−2�1�xn+q0� − 2e−�1�xn+q0�� + V2�e2�2�xn−q0�

− 2e�2�xn−q0�� . �2�

The triple-well potential, introduced in Sec. V, is composed
of the symmetric potential �2� and the central Pöschl-Teller
potential. The double Morse potential, composed of two
Morse single-well potentials, has a richer structure than other
bistable potentials, e.g., “�4,” and was found to be a suitable
tool for modeling realistic situations like the hydrogen bond.
Nevertheless, most of our results and predictions are inde-
pendent of the choice of a particular form of an on-site po-
tential.

Thermodynamic properties are studied by using the parti-
tion function

Z = Tr e−�H. �3�

That partition function treated rigorously takes the form
of the functional integral,

Z = Tr e−�H =� 	
n

dxn�
x̄��e−�H�x̄��

=� 	
n

D�xn����exp�−
1

�
A�x̄����� , �4�

where the action A is an integral over imaginary time �see
Appendix A�. The classical limit, usually regarded as a high-
temperature approach, arises when noncommutating coordi-
nate and momentum operators are substituted by real valued
numbers. Then the partition function Z is by definition ex-
pressed as an integral over all momentum and coordinates,

Zcl =  	

2

�N� dpNdxNexp�− �	�

n
 pn

2

2
+ V�xn − xn−1��� ,

V�xn,xn−1� =
1

2
k�xn − xn−1�2 + V�xn� , �5�

where 1/� is measured in ��0 units, and 	�m�0 /��2.
The problem of finding a partition function in a 1D sys-

tem might be converted into an integral operator eigenvalue
problem in that limit; in the continuum limit, that eigenvalue
problem takes the form of a differential, pseudo-Schrödinger
equation. In the framework of a quantum approach to 1D
nonlinear systems �1�, rather limited results have been pro-
duced so far. As was noticed by Gütlich et al. �16� and
Boukheddaden et al. �10,11�, in the case of systems display-
ing spin-crossover transformations, quantum aspects may be
essential even at room temperature. Hence we are consider-
ing here an approach that goes beyond the classical approxi-
mation, and quantum features are taken into account from
the very beginning: the partition function is treated as a func-
tional integral, and a classical approximation arises in a natu-
ral way as a high-temperature limit.

III. PARTITION FUNCTION: QUANTUM APPROACH AND
CLASSICAL LIMIT

In order to make an approximate evaluation of the parti-
tion function in the framework of a quantum approach, we
invoke a Feynman-Kleinert approximation. Originally, the
Feynman-Kleinert method was designed for zero-
dimensional, one-particle problems. The key element of that
approximation is a procedure of averaging over quantum
fluctuations performed in a variational way leading to a
pseudoclassical partition function. Applying that approach to
the 1D system �see Appendix A�, one obtains a semiclassical
form of the partition function with some effective,
temperature-dependent potential �17,18� �see Eq. �7��,

Zscl =  	

2
�
�N/2� 	

n=1

N

dxn exp�− �	Ṽeff��xn��� . �6�

An effective potential is given by �see Appendix A�
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Ṽeff = �
n

1

2
k�xn − xn−1�2 +

1

2
M�

q

���q
2 − �̃q

2�aq
2� + F0 + Vanh

eff ,

�7�

where

�q
2 = 4k sin2


N
q� ,

F0 = − kBT�
q

ln�
��̃q

2kBT

sinh� ��̃q

2kBT
�� ,

aq
2 =

kBT

M�̃q
2 ��̃q

2kBT
coth

��̃q

2kBT
− 1� .

Trial frequencies are taken from the minimization condi-
tion,

�Vanh
eff

��̃q
2 = 0 Þ �q

2 − �̃q
2 =

2

M

�Vanh
eff

�aq
2 ,

and an effective anharmonic potential is, in the case of a
double-Morse �DM� potential and in the limit of N→�,
given as

VDM
eff ��xn�� = �

n

�V1�e−2�1�xn+q0�e2�1
2D − 2e−�1�xn+q0�e�1/2��1

2D�

+ V2�e2�2�xn−q0�e2�2
2D − 2e�2�xn−q0�e�1/2��2

2D�� , �8�

D =
1

N
�

q

aq
2. �9�

The semiclassical form �6� of the partition function sug-
gests an implementation of an approach applied in the clas-
sical limit, namely the transfer-matrix method; then the ther-
modynamic properties of such a system may be investigated
by means of the lowest eigenvalue of an appropriate integral/
differential equation. In the classical limit, the transfer-
matrix method yields an eigenvalue problem with an on-site
potential, and the corresponding quantum-mechanical prob-
lem allows for a qualitative discussion. Feynman-Kleinert
treatment provides us with an on-site potential substituted by
an effective, temperature-dependent one and a qualitative
discussion appears to be very limited. The free energy of the
system in the continuum limit is determined by the lowest
eigenvalue of the Schrödinger-like equation,

�−
d2

du2 + 2�2k	2Vanh
eff �u���n�u�

= 2�2k	En +
1

2�
ln

2


�k	
��n�u� . �10�

Numerical methods are invoked here �see the next sec-
tion� to study the properties of that continuum limit. Before
discussing the thermodynamics determined by partition func-
tion �6�, let us make some general remarks. First, let us no-

tice that the form of the effective on-site potential gradually
evolves with temperature toward the original one in the high-
temperature limit �see Fig. 1�. The procedure of averaging
over quantum fluctuations results in a smoother shape of the
effective potential than the original, i.e., lowering the poten-
tial barrier and level of asymmetry. Second, one can find a
variety of regimes and limits in a class of systems with an
asymmetric double-well on-site potential. One can distin-
guish classical and quantum regimes and continuum and dis-
crete limits; also asymmetry might be, as we will see, quan-
tified. Three characteristic energy parameters might be
identified in that context: thermal fluctuations, kBT, quantum
fluctuations, i.e., zero-point energy, ��0, and the height of
the energy barrier of the on-site potential. Interplay among
these quantities identifies the expected corresponding re-
gimes. The classical limit is reached when the characteristic
energy, kBT, is large compared to the energy of quantum
fluctuations, ��0. One can expect that interesting phenomena
will be encountered in the range of energies below the barrier
of the on-site potential. The ratio of the quantity m�0

2 /�2,
proportional to the height of the barrier of the on-site poten-
tial, and the energy of quantum fluctuations, ��0, denoted as
	, may be referred to as a parameter measuring the influence
of quantum effects. A large value of 	 corresponds to the
systems where quantum effects are limited to the low-
temperature range and may be regarded as small quantum
corrections. A small value of 	 corresponds to the systems
where interesting nonlinear effects are observed within the
quantum regime. An attempt to quantify a level of asymme-
try is made and systems with small and large asymmetry are
identified. Such a division could not be rigorous, but we can
distinguish these two cases on the basis of a criterion of
“crossing” or “noncrossing” “single-well” levels �see below�.
It results from the fact that the double-well on-site potential
as composed of the two wells is characterized by the shape
of the two wells and their mutual arrangement. The conclu-
sion for a triple-well potential is straightforward.

One can also distinguish between discrete and continuum
limits. As a strong coupling between atoms corresponds to

FIG. 1. The shape of the effective potential for values of param-
eters: V1=0.5, V2=0.6, �1=0.7, �2=0.95, q0=7, k=1, and 	=1, for
three values of temperatures: T=0.001 �dash-dot-dotted line�; T
=0.1 �dotted line�; T=1 �dashed line�—compared to the classical
potential �solid line�.
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the continuum limit, a suitable parameter, k, describes the
ratio of the harmonic interaction energy and the height of the
barrier of the on-site potential. Hence, classical and quantum,
continuum and discrete regimes in small and large asymme-
try systems may be considered as particular limits. However,
as we shall see, thermodynamic properties appear to depend
effectively on the level of asymmetry of the on-site potential.
Thermodynamic characteristics related to classical versus
quantum and continuum versus discrete limits, rather easily
predicted, are not leading �in thermodynamics� to qualita-
tively new phenomena. Therefore, we shall consider the situ-
ation of a triple-well potential, in the classical limit, for the
case of two symmetric side wells on either side of a central
well �deeper or shallower�.

IV. CLASSICAL THERMODYNAMICS IN THE
CONTINUUM LIMIT �š1, k1: SYSTEMS WITH AN

ASYMMETRIC DOUBLE-WELL POTENTIAL

Classical thermodynamics is generally regarded as a high-
temperature limit, where the noncommutative character of
the variables-operators is ignored. In the framework of the
Feynman-Kleinert approach it arises naturally, as the energy
of any quantum-mechanical excitation is much smaller than
the classical energy, kBT. Then one finds

lim
�→0

1

	��q
2��xn��

��q��xn��
2

coth
	��q��xn��

2
− 1� = 0,

�11�

i.e., a2=0; that fully reproduces the classical approach: quan-
tum fluctuations disappear. In this case, quantum effects are
limited to low temperatures, kBT� �Vmax−Vmin� �see Fig. 14
in Appendix B�. The high-temperature limit �11� restores for
the effective potential in the quantum partition function �4�
its original form �2�. Then partition function Z takes the form

Z =  	

2
�
�N/2� 	

n=1

N

dxn exp�− �	V�xn,xn−1�� , �12�

which actually is a classical partition function �5� averaged
over momentum p,

Zcl =  	

2
�
�N/2

�
n

e−�NEn���. �13�

The configurational part of the partition function is expressed
via eigenvalues of an appropriate integral operator K �see,
e.g., Morris and Gooding �7��,

� K�x,y��n�y�dy = �n�n�x�, �n = e−�En �14�

defined as

K�x,y� = exp�− �1

2
	V�x� +

1

2
k	�x − y�2 +

1

2
	V�y��� .

�15�

In the continuum limit, k1, this integral eigenvalue
problem is converted into a differential, Schrödinger-
equation-like problem,

e−�1/2��	V�x�e�1/2�ln�2
/�k	�e�1/2�k	��d2/dx2�e−�1/2��	V�x��n�x�

= e−�En�n�x� , �16�

−
1

2m*

d2

dx2 + V�x���n�x� = En +
1

2�
ln

2


�k	
��n�x� ,

�17�

m* � �2k	2. �18�

The ground-state eigenvalue of that equation is simply re-
lated to the free energy of the system,

F = − lim
N→�

1

N�
ln Zcl

= −
1

2�
ln 	

2
�
� + E0 + lim

N→�
ln1 + �

n�1
e−�N�0n�

= −
1

2�
ln 	

2
�
� + E0, �19�

and mean energy, entropy, and specific heat are expressed via
the ground-state eigenvalue and its first- and second-order
derivatives,

U � 
H� = −
1

Zcl

�

��
Zcl =

�

��
��F� =

1

2�
+ E0 + �

�E0

��
,

�20�

S =
U − F

T
= −

�F

�T
, �21�

CV =
�

�T
U =

1

2
− T

�2E0

�T2 . �22�

The probability distribution function �PDF� equals the
squared ground-state eigenfunction and is interpreted as a
probability density of finding a certain value of the on-site
potential for the particle’s coordinate �19�.

The effective mass in the pseudo-Schrödinger equation
�10� is proportional to the inverse square temperature. The
high-temperature limit corresponds then to a “light particle”
and ground state placed above the barrier of the on-site po-
tential; in this limit, the PDF turns out to be centrally cen-
tered, nearly independent of the form of an on-site potential.
The low-temperature limit corresponds to a “heavy particle”
and ground state placed well below the edge of the potential
barrier—the properties of the solution of Eq. �10� are ana-
lyzed in Appendix B by using the semiclassical approach
called RTCT �real trajectories in complex time� �20�.

That method provides us with a description of tempera-
ture evolution of the “double-well” ground state of the sys-
tem E0 as related to temperature evolution of “single-well”
ground states E0

1 and E0
2. These “single-well” states corre-

spond to the classical free energy �configuration part� of two
“single-well” phases: harmonically coupled oscillators with a
left and right Morse well, as an on-site potential. The evolu-
tion of a pure state, described here analytically �Appendix
B�,
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E0
i = −

T2

k

�i
2

2	21

2
−�2	2kVi

�i
2T2 �2

,

depends on the shape of the potential well: evolution in a
narrower well is faster than the evolution in a broader well.
That leads to two different types of asymmetry associated
with two different scenarios of temperature evolution.

A. Small asymmetry—“Shift” type

Let us begin with an on-site potential composed of the
two identical �face-to-face� Morse wells shifted against each
other, �1=�2, V1�V2. Single-well states are evolving in the
same way and the distance between them, E0

2−E0
1�V1V2�,

is �nearly� temperature-independent �see Fig. 2�a��; the
double-well ground state corresponds to the lower of the
single-well states. The temperature behavior of the ground-
state eigenfuction and PDF is rather smooth: at low tempera-
tures, the PDF is centered in the lower well, gradually leak-
ing to the higher well �Fig. 2�a��. Such behavior is
accompanied by the emergence of the hump in the specific
heat �Fig. 2�b��. That hump, characteristic of the symmetric
on-site potential �dashed line in Fig. 2�b��, was interpreted as
responsible for the domain-wall �kinks� movement. More
generally, the scenario with a smooth hump in a specific heat
and a smooth change of other quantities takes place in sys-
tems with a �nearly� uniform evolution of single-well states.
We will refer to such systems as a small asymmetry, or
“shift” type asymmetry: the difference E0

2−E0
1 only depends

weakly on the temperature. Namely, in systems of small or
shift type asymmetry, single-well ground states do not cross
each other.

B. Large asymmetry—“Shape” type

One can define then the systems of large asymmetry—
“shape” type—as those in which the single-well ground en-
ergy distance E0

2−E0
1 varies with temperature, and vanishes at

some particular temperature. Namely, if the single-well

ground states cross each other, the system is referred to as a
large, or shape-type asymmetry. Such a level crossing would
happen in the case of an on-site potential composed of two
wells of different shapes, �1��2, when the lower well be-
comes narrower than the shallower one. That is a necessary
condition; a satisfactory one is that single-well level crossing
has to take place before they would reach the edge of the
potential barrier. When the single-well states are getting
closer, �E0

1−E0
2��E1

1−E0
1, double-well states are forming

characteristic pairs. A pair corresponding to the ground state
is given as �see Appendix B�

E0
� =

1

2
��E0

1 − E0
2� � ��E0

1 − E0
2�2 + b2�E0��1�2� , �23�

�i = � �Wi

�E
�

E=Ei
0
�−1

. �24�

Then the intersection of the ground states E0
1 and E0

2 hap-
pens at temperature T*,

T* =
2	�2k

�2 − �1
��V2 − �V1� . �25�

That effect is not directly observed, but avoided level
crossing happens �Fig. 3�a��, hidden behind a smooth change
of E0

−�T� �Fig. 3�. However, avoided level crossing is ex-
pected to result in a particular sort of phase transformation
and should have quite dramatic consequences for other char-
acteristics of the system. Indeed, the PDF reveals a “rapid
jump” between the wells �see Fig. 3�. Such a coherent tran-
sition between two single-well phases is accompanied by a
high and narrow peak in the specific heat, Fig. 3�b�. The
analytic form of the specific heat in the vicinity of the inter-
section, �E0�E2

0−E1
0=0, found from Eq. �23�,

FIG. 2. �a� PDF for small asymmetry �values
of parameters: V1=0.4, V2=0.5, �1=�2=0.8, q0

=7, k=100, 	=10� for temperatures T=100
�solid�, T=150 �dash�, T=200 �dot�, T=250
�dash-dot�, T=500 �dash-dot-dot�, with two low-
est energy levels �inset�—dashed lines corre-
spond to the single-well states; �b� specific heat
for the same parameters with the shape of the
on-site potential �inset�—compared to the sym-
metric case �values of parameters: V1=V2=0.45,
�1=�2=0.8, q0=7, k=100, 	=10�, dashed lines.
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CV �
1

���E0�2 + b2�E0��1�2

, �26�

indicates nearly singular behavior for a large energy barrier:
the height of this peak is proportional to the exponent of the
area under the barrier between wells. The two-peak structure
of the specific heat in the case of large asymmetry of a par-
ticular type reflects two phase transformations.

The first of these transformations, at lower temperature, is
sharp, an entropy-driven change from a stable state to a
metastable state; the other transformation, at higher tempera-
ture, is smoother, corresponding to a change from a meta-
stable state to a high-temperature state. Such a sequence of
two phase transformations is reflected in an average “posi-
tion”: indeed, an average position, defined as 
x�
=�xdx��0�x��2, displays an unusual behavior �Fig. 4�, corre-
sponding to the above description. It should be emphasized
that a smooth temperature dependence in the high-
temperature range, drift to a metastable state, and a sharp,
“jumplike” change to a stable state at lower temperatures are

characteristic of large-asymmetry, strongly coupled �con-
tinuum limit� systems.

A dramatic jump in the PDF, accompanied by nearly sin-
gular behavior of specific heat, is only weakly manifested in
lower-order thermodynamic functions, mean energy, and en-
tropy. In Figs. 5�a� and 5�b�, one can see how these functions
change, from the form characteristic of the narrower well to
the form characteristic for the wider well �results correspond-
ing to pure phases are plotted by dashed lines�.

V. QUANTUM EFFECTS AND EFFECTS OF
DISCRETENESS

A. Quantum regime in the continuum limit: �É1, k1

Quantum fluctuations enter the picture when the thermal
energy is comparable with zero-point fluctuations energy: in
the Feynman-Kleinert approach, quantum fluctuations mea-
sured by parameter a2 are no longer ignored. In the con-
tinuum limit, thermodynamic properties are studied by
means of the eigenvalues and eigenfunctions of the pseudo-
Schrödinger Eqs. �10�. In the range of large values of param-
eter 	 �	�1, the classical limit�, the effective potential,
evolving with temperature, takes its original form �classical
limit� well before the interesting effects in specific heat, a
hump or two-peak structure, are developed. Specific heat ex-
hibits then a usual behavior: it starts from zero, reaches the
high-temperature value, and only then do interesting effects
�one or two peaks� appear �in Figs. 6 and 7, see curves 	
=10�.

In that range, quantum fluctuations may be regarded as
small corrections. Quantum effects become more important
when the values of parameter 	 become smaller and quantum
fluctuations modify significantly the on-site potential within
the range of phase transformation. It was stressed earlier �21�
that hydrogen-bonded and spin-conversion systems may
manifest their quantum character, even at room temperatures,
via affecting the shape of the hump in the specific heat. In-
vestigating the systems of small asymmetry, one finds that a
decreasing value of 	 corresponds to an extension of the

FIG. 3. �a� Avoided level crossing for large
asymmetry �values of parameters: V1=0.4, V2

=0.5, �1=0.7, �2=1, q0=7, k=100, 	=10�—two
lowest double-well levels E0

� �solid lines� and
single-well ground levels E1

0, E2
0 �dashed lines�

are shown; avoided crossing enlarged in the inset.
�b� Specific heat for the same parameters with
PDF �inset� for temperatures T=25 �solid�, T
=70 �dash�, T=71 �dot�, T=150 �dash-dot�, T
=300 �dash-dot-dot�.

FIG. 4. Average “position” for large asymmetry �values of pa-
rameters: V1=0.4, V2=0.5, �1=0.7, �2=1, q0=7, k=100, 	=10�.
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region influenced by quantum behavior. The hump in the
specific-heat function, whose height is damped by the quan-
tum fluctuations, enters the quantum region �see Fig. 6, 	
=2�. Further increase of quantum fluctuations wipes out the
hump, 	=1 in Fig. 6.

The systems of large asymmetry become sensitive to
quantum effects for small values of 	, when the higher peak,
corresponding to level crossing, enters the quantum range;
quantum modification of the on-site potential reduces the
height of the peak �Fig. 7�.

The above analysis confirms a prediction that one param-
eter, 	, governs the quantum fluctuations in the system.

B. Effects of discreteness: kÏ1

Discrete effects are becoming essential in weakly coupled
systems, k�1. Their actual influence appears to be quite
important in the dynamics, where localized excitations, un-
stable in continuum limit bell shapes, are stabilized due to
discreteness �22�. Other significant effects are related to the

emergence of breathers. A naive expectation was that stabi-
lization of bell shape excitations would be reflected in the
thermodynamics: it means that discrete systems with an
asymmetric double-well potential should reveal more similar
behavior to the systems with a symmetric double-well poten-
tial than their continuous counterpartners. However, even in
the continuum limit the thermodynamics of systems with
symmetric and asymmetric on-site potential were found to be
similar to each other for small asymmetry despite the differ-
ences in their dynamic properties.

In the context of our discussion of the thermodynamic
properties of the 1D model, discreteness is taken into ac-
count �in the classical limit� modifying the method of evalu-
ation of the free energy. In the continuum limit, thermody-
namics of that 1D problem is described by the ground state
of the “zero-dimensional problem,” fictitious particle of mass
m*��2k	2 proportional to interaction constant k living
within an on-site potential, perfectly satisfying a dimensional
crossover hypothesis. In the discrete case, a question of find-
ing a free energy is still expressed as an eigenvalue problem
for an appropriate integral �not differential� operator. One
can expect that for diminishing values of coupling parameter
k, the differential Schrödinger-type equation becomes less
applicable; instead, the integral eigenvalue approach �14�
and �15� should be applied. Therefore, the thermodynamic
properties are studied by means of the ground eigenvalue and
corresponding ground eigenstate of the integral eigenvalue
problem �14�,

� K�x,y��n�y�dy = �n�n�x� ,

where an integral operator K is explicitly given by Eq. �15�.
There are a limited number of tools that enable a qualita-

tive discussion of solutions of the above eigenvalue problem.
We invoked here numerical methods: problem �14� has been
solved within and beyond the classical limit. The results are
presented for selected model parameters in Fig. 8: though the
RTCT method and the following interpretation could not be
applied here, the general conclusions are preserved. One can

FIG. 5. �a� Mean energy and �b� entropy for
parameters: V1=0.4, V2=0.4, �1=0.7, �2=1, q0

=7, k=100, 	=10, with enlarged regions of steps
in these functions �insets�.

FIG. 6. Quantum effects in specific heat �small asymmetry: V1

=0.4, V2=0.5, �1=0.8, �2=0.8, q0=7, k=100� for various values of
quantum parameter 	.
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observe double-peak structure of specific heat corresponding
to the avoided-level crossing. As one can see, discreteness
suppresses intensity of peaks in specific heat. So, in a sense,
it acts in a way similar to quantum fluctuations. The regime
where discreteness turns out to be a key factor governing the
overall picture is a large asymmetry limit. In fact, the high
and narrow peak in specific heat of the continuum limit,
manifesting in a coherent “jump” of the whole system be-
tween the pure states, should be strongly suppressed; such a
“jump” should disappear in the limit of independent lattice
sites �k=0�. As can be seen in Fig. 8, growing discreteness
�diminishing k� leads to that behavior: the narrow peak in
specific heat turns out to be suppressed in the discrete system
�k�1�, but it is still present, though shifted, to a very low
value of k.

VI. SYSTEMS WITH ASYMMETRIC, TRIPLE-WELL
POTENTIAL

In our example of a triple-well potential, side wells are
symmetric and a central well may be shallower or deeper.

The properties of that class of systems are studied by means
of methods applied above for double-well potential systems.
The discussion here will be limited to the case of the classi-
cal continuum approximation: quantum and discrete effects
result in foreseeable changes. Depending on the interplay
between depth and width of the middle and side wells for
that triple-well potential, a one-or two-peak structure of the
specific-heat function may also be observed. A smooth
hump, associated with the appearance of large-amplitude ex-
citations, appears in the range of high enough temperatures
where, apart from small-amplitude oscillations, large-
amplitude, localized excitations occur. That process is ac-
companied by leaking of the PDF through a region of the
barrier. On the basis of the analysis in Sec. IV, one can make
a prediction of when another, higher peak may be developed
in the case of systems with a triple-well potential. That will
happen due to the intersection of the unperturbed, single-well
ground energy levels Ei

0 at some specific temperature. Pro-
vided that this temperature is lower than the temperature
when �max Ei

0� reaches the edge of an energy barrier, the
second, sharp peak will occur in the specific-heat function.

FIG. 7. Quantum effects in specific heat �large
asymmetry: V1=0.4, V2=0.5, �1=0.7, �2=1, q0

=7, k=100� for various values of quantum pa-
rameter 	.

FIG. 8. Discrete effects in specific heat �large
asymmetry: V1=0.4, V2=0.5, �1=0.7, �2=1, q0

=7, 	=10� for various values of parameter k:
continuum approximation �solid lines� and dis-
crete results �dashed lines�.
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To fulfill this condition, the energy-level crossing—as in the
case of the double-well potential’s “large” asymmetry �the
deeper well being both side or middle in that case�—should
also be narrower. For numerical reasons, the following form
of the triple-well potential has been chosen:

V3�x� = VDM�x� + VPT�x� , �27�

where VDM�x� is the double-Morse potential �2� and VPT�x� is
the Pöschl-Teller potential,

VPT�x� = −
V0

cosh2 x − p0

�
� . �28�

In Figs. 9�a� and 10�a�, two examples of such potentials are
shown; the energy of the true ground state of the system, E0,
and pure ground states in the wells, Ei

0, is indicated. In Figs.
9�b� and 10�b�, the PDF for these two cases is presented, and
in Figs. 9�c� and 10�c�, the corresponding specific-heat func-
tions are presented.

VII. DISCUSSION

The aim of this paper was to give a thorough discussion
of thermodynamic properties of the lattice, one-dimensional
systems with an asymmetric potential revealing entropy-
driven phase transformations. One of the motivations was to
determine the thermodynamic context of such a minimal lat-
tice model of photoinduced phase transitions, where the
ground electronic state is a multiple-well potential. We have
discussed the properties of an asymmetric double-well poten-
tial and a triple-well potential with symmetric side wells. The
former of these two types of potential relates to a Koshino
and Ogawa model �9� and a model of spin conversion �10�;
the latter one relates to a generalization of three localized
electronic states. Applying the Feynman-Kleinert approach
to that class of systems, one finds a partition function in a
semiclassical form with an effective temperature-dependent
potential. Therefore, thermodynamic properties both in clas-
sical and in quantum regimes are studied by means of an
appropriate integral or differential �pseudo-Schrödinger�
ground-state eigenvalue problem. The semiclassical WKB-

FIG. 9. Triple-well potential for values of pa-
rameters: V1=V2=0.55, �1=�2=0.8, q0=8, V0

=0.7, �=0.55, p0=0, k=100, 	=10. �a� Triple-
well ground energy level �solid line� and single-
well energy levels corresponding to side and
middle well �dashed and dotted lines�, obtained
via zeroth-order RTCT; �b� specific-heat function;
�c� PDF for a few chosen temperatures: T=20
�solid�, T=35 �dash�, T=37 �dot�, T=100 �dash-
dot�, T=140 �dash-dot-dot�.

FIG. 10. Triple-well potential for values of
parameters: V1=V2=0.7, �1=�2=0.7, q0=7, V0

=0.8, �=5, p0=0, k=100, 	=10. �a� Triple-well
ground energy level �solid line� and single-well
energy levels corresponding to side and middle
well �dashed lines�, obtained via zeroth-order
RTCT; �b� specific-heat function; �c� PDF for a
few chosen temperatures: T=20 �solid�, T=25
�dash�, T=50 �dot�, T=100 �dash-dot�, T=250
�dash-dot-dot�.
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type approximation, namely the RTCT method applied for
the pseudo-Schrödinger equation, provided the tools for a
qualitative discussion and interpretation: in the case of a
double-well potential, the true, double-well ground state may
be regarded as a “mixture” of unperturbed, single-well
ground states of left and right wells. Ground-state energy is
interpreted as appropriate free energy: pure ground energy
levels of left and right wells correspond to free energies as-
sociated with small oscillations �phonons� in left and right
wells. Asymmetry of an on-site potential might be quantified
as a “small” asymmetry, of “shift” type, and a “large” asym-
metry, of “shape” type. The distinction between large and
small asymmetry originates from temperature evolution of
single-well ground states: they may �large asymmetry� or
may not �small asymmetry� cross each other. Thermal evo-
lution of a single-well state in a narrower well is faster than
evolution in a broader well. Therefore, when the lower well
is narrower than the shallower one, the single-well states
may cross each other. Such a crossing, in this case described
analytically, has to take place before the higher of these
states reaches the edge of the potential barrier. It should be
emphasized that the specific feature of our choice of double-
well potential is composed of two Morse potentials. Due to
the exact solvability of a Morse potential, temperature evo-
lution of single-well ground states �free energy of single-well
phases� is described analytically. In the more general case of
an arbitrary asymmetric double-well potential, the numerical
rather than the analytical method is applied. Namely, evolu-
tion of the single-well states �Eq. �B2��,

cos�Wi�Ei
n�� = 0,

is found numerically for each of the wells separately. In the
vicinity of their intersection, the true ground state is still
given as a simple calculus problem, Eq. �B3�. Asymmetry of
an on-site potential is a key feature influencing temperature
behavior of �ground� levels within the wells. As was for-
merly noticed �21�, shift asymmetry is accompanied by a
hump in the specific heat. Shape asymmetry may be accom-
panied, under particular circumstances, by a nearly singular,
exponentially large peak in the specific-heat function, a
hump being present in that case as well. The sharp peak is a
result of an intersection of single-well ground energy levels,
and the PDF of a system exhibits a dramatic “jump” between
wells. It turns out that specific heat remains finite, as analytic
evaluation confirms—there is no phase transition here, as
one can expect in 1D system. Level crossing in systems with
a large energy barrier between distinct �pure� phases at the
crossing temperature should also be accompanied by other
interesting effects. The results of preliminary Monte Carlo
simulations �23� for thermodynamics display the mutual in-
tersection of pure phases in the vicinity of the crossing point
�see Fig. 11�. In the case of a system of large asymmetry,
studying equilibrium configurations one can observe the for-
mation of “bubbles” or strings: finite length regions of a less
stable phase are incorporated into a more stable phase. That
observation is made in the vicinity of the crossing/
transformation point. These static properties are reflected in
the dynamics of the system �studied at particular tempera-
tures by means of a Nose method, following the Peyrard et

al. �24� application�: bell-shape, localized excitations are ob-
served in the neighborhood of the phase transformation point
�see Fig. 12�. The coexistence of finite length strings of an
unstable phase incorporated into a stable phase is a charac-
teristic for that type �large asymmetry� of system. It appears
to be an interesting aspect of investigated systems, especially
in view of experimentally observed finite length “strings” in
photoinduced phase transitions; that problem will be the sub-
ject of a separate discussion. It should be added that large
asymmetry, as related to crossing single-well ground levels,
does not necessarily lead in 1D systems to a nearly singular
manifestation. In fact, such a dramatic manifestation �in spe-
cific heat and PDF� is attributed to the situation of distinct
phases with an exponentially large energy barrier between

FIG. 11. �Color� Equilibrium configurations of particles for
model parameters: V1=0.5, V2=0.6, �1=0.7, �2=0.95, q0=7, k
=10, 	=1 for temperatures �a� T=3, �b� T=3.8, �c� T=4.99, �d� T
=10, �e� map of colors used, �f� average position vs temperature.
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them. When the crossing takes place for less pronounced,
“softer” barriers, it may cause less dramatic effects in spe-
cific heat �see Fig. 13�. It is even more interesting, then, to
investigate the consequences of level crossing �large asym-
metry systems� observed for 1D systems for the properties of
these systems in higher dimensions.

In a quantum regime, an on-site potential is substituted by
an effective one but the characteristic features of the above-
described behavior are preserved. Namely, pure free energies
�single-well ground energies� of the subsystems �wells� are
getting mixed when the temperature rises. Quantum effects
might affect the scenario of the phase transformation in the
following way: the on-site potential becomes modified, the
barrier becomes lowered, and the wells become shallower.
Specific heat is modified in the range of low temperatures,
and depending on the value of the parameter 	, it may, 	
�1, or may not, 	�1, affect entropy-driven phase transfor-
mation. The temperature dependence of the specific heat in
the former case resembles the experimentally observed de-
pendence for the spin crossover systems underlying the
quantum character of these compounds—the quantum effects
do not affect thermodynamics in an unexpected way.

Similarly to in the case of the symmetric on-site potential,
discreteness suppresses the changes, e.g., diminishing the in-

tensity and shifting peaks in the specific heat toward lower
temperatures. Growing discreteness, regarded as weakening
intersite coupling, is then studied by using the integral in-
stead of the differential eigenvalue problem. Solving numeri-
cally that problem, one can find a quantitative rather than a
qualitative difference between thermodynamics in the con-
tinuum limit and in a discrete case. Discreteness seems to be
most important in the case of large asymmetry: weakening
coupling affects the high and narrow peak, which is getting
less intense and shifted toward the hump, being eventually
swept out in a limit of independent sites. The changes caused
by the discreteness are rather smooth and foreseeable even in
that limit.

Systems with an asymmetric triple-well potential �sym-
metric side wells� exhibit the structure of a specific heat
similar to the one of the systems with a double-well poten-
tial. Two-peak structure accompanies large asymmetry sys-
tems, both in the case of deeper side wells and in the case of
deeper central well. The high and narrow peak corresponds
to the dramatic change of a PDF structure and to a back-
ground pseudo-quantum-mechanical mechanism, namely the
intersection of single-well ground energy levels of side and
central wells. The hump in specific heat reflects “leaking” of
the PDF from a well pronounced, more compact structure to
a less compact form. Such a two-peak form of specific heat is
expected to be damped by quantum fluctuations in a quantum
regime, i.e., when an energy barrier is comparable with the
energy of quantum fluctuations. Discreteness also would lead
here to foreseeable smoothening of the specific-heat func-
tion.

Summarizing, let us emphasize the following: the com-
mon feature of systems of “small asymmetry” and “large
asymmetry” is a smooth hump in the specific heat. That
hump, being regarded as a manifestation of kinks in the case
of a symmetric double-well potential, turns out to be present
in a wide class of systems displaying strong nonlinearity, of
multiple-well type, either symmetric or asymmetric. Nearly
singular behavior of specific heat appears to be a peculiar
feature of systems of “large” asymmetry. A sharp �but always
finite� peak may be influenced by discrete effects; quantum
effects turn out to be less influential. The interesting issue
relates to the physical meaning of the phase transformations
in systems of higher dimensions. In the case of one dimen-
sional systems, “small” asymmetry is associated with one
phase transformation and “large” asymmetry corresponds to
two phase transformations. Due to their origin, these phase
transformations should be referred to as entropy-driven
phase transformations; a spectacular sequence of two fol-
lowing phase transformations is most clearly visible in an
averaged position �Fig. 4� revealing behavior unique for
large, shape asymmetry. Are entropy-driven phase transfor-
mations in one dimension going to convert into entropy-
driven phase transitions �of first order� in higher dimensions?
That question seems to be intriguing also for other reasons.
Recently, Boukhedadden �10� reported the possibility of a
1D low-spin–high-spin transformation in a spin-conversion
system exhibiting a sharp peak in specific heat. The sharp-
ness of that peak was, however, the result of anharmonicity
of intersite coupling rather than asymmetry of an on-site po-
tential. As argued by Morris and Gooding �7�, the sharpness

FIG. 12. �Color� Dynamics of particles for model parameters:
V1=0.5, V2=0.6, �1=0.7, �2=0.95, q0=7, k=10, and 	=1 for tem-
perature �a� T=3.8, �b� T=4.4.
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of the entropy change in the first-order phase transition in
two-dimensional systems with a triple-well on-site potential
is actually caused by the anharmonic interaction term. Is
such an anharmonicity of interaction an alternative to a large
asymmetry of the on-site potential mechanism for the sharp
peak of the specific-heat 1D system? Or, in other words, are
there two alternatives in 1D systems—large asymmetry of
the on-site potential and anharmonicity of an intersite
term—as precursors of a phase transition of the first order in
higher dimensions? One can rather expect that the driving
mechanism leading to first-order phase transition in higher
dimensions would be crossing of “single-well” ground states
corresponding to “pure” phases—it should correspond then
to the systems of large asymmetry. That problem, apart from
the further discussion of thermodynamics of photoinduced
phase transitions and the possibilities of other types of
lattice-driven phase transformation, will be considered in fu-
ture papers.
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APPENDIX A

The quantum-mechanical partition function may be ex-
pressed as a functional integral,

Z = Tre−�H =� 	
n

dxn�
x̄��e−�H�x̄��

=� 	
n

D�xn����exp�−
1

�
A�x̄����� , �A1�

where an action A is an integral over imaginary time,

A�x̄���� = �
0
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�
n
M

2
ẋn

2 + V�xn���� +
1

2
k�xn��� − xn+1����2�d� ,

T = �� . �A2�

Expanding trajectories in imaginary time around mean
values,

xn��� = xn
0 + �

m=1

�

�xn
me−i�m� + xn

m*ei�m�� , �A3�

where �m=2
m /�� are Matsubara frequencies, one gets
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2
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�xn
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0N

2
�2�

M
�N/2 exp�− �Veff� .

Let Û be a unitary matrix that diagonalizes the harmonic

part of Hamiltonian Ĥ, ū= Ûx̄,

FIG. 13. Large asymmetry
�solid lines� evolving toward
small asymmetry �dashed lines�.
Small asymmetry potential param-
eters: V1=0.4, V2=0.5, �1=0.7,
�2=0.7, q0=7, k=100, 	=10;
large asymmetry potentials pa-
rameters: V1=0.4, V2=0.5, �1

=0.7, q0=7, k=100, 	=10. �2=1
�a�; 0.95 �b�; 0.9 �c�; 0.8 �d�.
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H = �
q
1

2
Mu̇q

2 +
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2
M�q

2uq
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In these new variables, the action reads
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We define a local trial action as
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with the matrix of trial frequencies �̃
ˆ 2 chosen so as to be

diagonalized by matrix Û,
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As matrix Û is unitary, �duq
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Using the Jensen-Peierls inequality,
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An estimation for effective potential is
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After some algebra, it turns out that the effective potential
reads
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One gets trial frequencies from a minimization condition,
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In the high-temperature limit, quantum parameters aq
2’s

tend to zero and the effective potential regains its classical
shape: limT→�Veff=V.

In general, the matrix of trial frequencies �̃
ˆ 2 need not be

chosen in such a way that will be diagonalized by the same
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matrix that diagonalizes the harmonic part of the Hamil-
tonian. However, applying the variational procedure—with
respect to aq

2’s—to the resulting effective potential gives the

result that in the first-order approximation, the matrix Û di-
agonalizes the matrix of trial frequencies �25�. We use this
result from the very beginning. In the case of the double-
Morse potential,

V�y� = V1�e−2�1�y+q0� − 2e−�1�y+q0�� + V2�e2�2�y−q0�

− 2e�2�y−q0�� ,

one gets a sum of integrals of Gaussian type, which may be
solved by gathering to the quadratic form,

� dyn

�2
D
exp�−

1

2

�yn − xn
0�2

D
− �yn� = exp�− �xn +

1

2
�2D�

with �=�1 ,2�1 ,�2 ,2�2 successively.
So

VDM
eff = �

n

�V1�e−2�1�xn+q0�e2�1
2D − 2e−�1�xn+q0�e�1/2��1

2D�

+ V2�e2�2�xn−q0�e2�2
2D − 2e�2�xn−q0�e�1/2��2

2D�� �A21�

self-consistently with Eqs. �A18� and �A20�.
For numerical reasons, we will use here an approxima-

tion: D, which in general depends on coordinates �xn�, will
be taken invariant: D��xn���D��xmin��, where xmin means
this value of coordinate xn, constant along the chain, where
the effective potential takes its minimum value: VDM

eff �
��xmin��=0. Also the limit of N→� will be taken for numer-
ics.

APPENDIX B

The pseudo-Schrödinger eigenvalue problem for an asym-
metric double well potential �2� might be solved by using the
semiclassical, WKB-type approach, RTCT �real trajectories
in complex time�, developed in �20�. This method provides
us with an explicit analytic formula determining energy lev-
els �see Fig. 14�,

cos�W1�E��cos�W2�E�� −
1

4
b2 sin�W1�E��sin�W2�E�� = 0,

�B1�

where

Wi�E� = �
bi−1

ai

dx�2m*�E − V�x�� ,

b�E� = exp− �
a1

b1

dx�2m*�V�x� − E��
�see Fig. 14�.

The ground-state eigenvalue E0 of Eq. �B1� corresponds
to the free energy of the original problem and evolves with
the temperature via m*�T−2. To study the properties, we use
a two-step approximation. A first step is to regard two wells

of the potential as independent—this corresponds to the im-
penetrable, an opaque barrier, b�E�=0. Energy levels Ei

n �i
=1,2� in the left �1� and right �2� wells are then found as
solutions �B1�,

cos�Wi�Ei
n�� = 0. �B2�

Single-well ground-state energy E1
0 �E2

0� corresponds to the
ground state of particles of mass m* oscillating in the left
�right� well. A second step is to take into account a finite
value of the barrier parameter, b�E��0: the actual, true,
double-well ground-state energy is expressed as a mixture of
“single-well” ground-state eigenvalues E1

0, E2
0. If E1

0 and E2
0

are close enough to each other, i.e., the distance between
them is smaller than the spacing between ground and first
excited levels within each of the wells, �E1

0−E2
0��min�Ei

1

−Ei
0�, then an analytic solution of Eq. �B1� might be found. A

characteristic pair of solutions E0
� is given as

E0
� =

1

2
��E0

1 − E0
2� � ��E0

1 − E0
2�2 + b2�E0��1�2� ,

�i = � �Wi

�E
�

E=Ei
0
�−1

. �B3�

The temperature evolution of the “double-well” ground
state E0

− depends on the distance of “single-well” ground
states �E1

0−E2
0�; that quantity itself depends on the arrange-

ment and the shapes of both wells. In the case of double
Morse potential �2�, the temperature evolution of “single-
well” ground states is described analytically: for an arbitrary
Morse potential,

VM�x� = V�e−2��x+q0� − 2e−��x+q0�� ,

the ground-state eigenvalue is known,

E0�T� = −
T2

2

�2

2	21

2
−�2	2kV

�2T2 �2

. �B4�

In the case of a triple-well potential, energy levels are
determined within RTCT by the following formula:

FIG. 14. Limits of integration in the RTCT method for the
double-well potential.
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cos�W1�E��cos�W2�E��cos�W3�E��

=
1

4
bII

2 cos�W1�E��sin�W2�E��sin�W3�E��

+
1

4
bI

2 cos�W3�E��sin�W1�E��sin�W2�E��

+
1

4
bI

21

4
bII

2 cos�W2�E��sin�W1�E��sin�W3�E�� ,

�B5�

where

Wi�E� = �
bi−1

ai

dx�2m*�E − V�x�� ,

bi�E� = exp− �
ai

bi

dx�2m*�V�x� − E��
�see Fig. 15�.

Single-well energy levels are defined by the first step, an
opaque barrier approximation in the same way as above �Eq.
�B2��. Triple-well levels might be expressed via single-well
levels in the case of close enough levels in a similar approxi-
mation as above, but in the paper only numerical results are
used.
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